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Abstract
Methods of causal description for transport phenomena are developed. The
approach applied is based on introduction of the upper limit velocity which is
interpreted as a speed of the signal used for observation. Differences in the heat
and mass transfer are considered. Corresponding evolution equations which
satisfy the causality principle are derived.

PACS numbers: 51.20.+d, 66.10.Cb, 66.20.+d, 66.60.+a, 66.90.+r

1. Introduction

Apart from deformation and transporting of finite volumes the hydrodynamic evolution
of fluids includes the so-called transport phenomena caused by the general tendency to
equilibrium which does not depend on a particular matter (the classical viewpoint on these
phenomena may be found in [1]). If some parameters in the initial state are distributed
inhomogeneously, an exchange towards equilibrium takes place. The three kinds of this
phenomenon include matter (mass), energy (heat) and momentum transfer. The classical
mass–heat–momentum transfer equations are widely used and are applicable to a variety of
problems. However, there are at least two reasons to seek out non-classical approaches to
describe these phenomena.

First, there are certain cases, in practice, when solutions of the corresponding parabolic
equations fail to predict and/or approximate the experimental data. This mainly concerns the
experimental studies of finite-speed propagation of the thermal signals at low temperatures
[2–5] as well as laser and microwave heating with extremely short duration or high frequencies
(see, e.g., [6, 7]).

Second, the classical description is unacceptable due to a fundamental reason: it
contradicts the causality principle. Classical theory models the transport phenomena using the
parabolic equations which are known to have an exponential fundamental solution (see, e.g.,
[8]). This feature may be physically interpreted as a possibility of propagation of disturbances
with infinite velocities. In other words such a model permits an effect to be synchronous
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with its cause. It is possible to justify the practical use of the classical approach in various
computations considering the rate of attenuation of the infinitely fast waves (see [9, 10]).
However, the presence itself of the infinite velocities testifies to ill-health of the theory. As
long as the causality principle is the basis of natural science, any theory which does not satisfy
it may be regarded as a useful computational tool, but not an adequate description of the
phenomenon.

According to the common viewpoint the transport phenomena differ in transferring
quantity only (mass, heat, momentum), whereas the mechanism in all cases is the same and is
understood as transfer due to the chaotic movements of the molecules and other microscopic
particles. This is the reason why the derivation of hyperbolic transport equations is often
started from the Boltzmann equation [11, 12]. Returning to considerations of the particle
dynamics after the continuity hypothesis is already postulated may be helpful in the search
for ideas. However, after the idea is found, it is desirable to derive corresponding equations in
the framework of the continuum being based on integral relations such as conservation laws.
This is especially important since only integral relations are verifiable in practice, whereas
differential relations are actually non-verifiable by definition.

A drawback of the particle dynamics approach seems to be in a loss of fundamental
differences in the transport of various quantities. The point is that while viscosity and
conductivity are two aspects of energy transfer, diffusion is another matter. First of all, in the
framework of continuum mechanics it is not connected with chaotic movements of the points
of the fluid since all of these movements are already described using viscosity/conductivity
by definition. Second, diffusion is the transport of mass, and hence is a current. The fact
that all of the transport phenomena are described by the same differential equation, within the
notation, does not identify their actual similarity. The motives which cause the description of
the flow of diffusing matter using the diffusion equation, and not the equations of motion, we
try to analyse in what follows below.

As has already been said, hyperbolic equations for the transfer problems have been
suggested in a number of publications. Besides the works cited above, some causal theories
for heat and mass transfer have been developed using the approach known as extended
irreversible thermodynamics. A review of these theories may be found in [13–16] and a
brief critical analysis is presented in [17]. A non-Fickian diffusion in the framework of
extended irreversible thermodynamics is considered in [18]. Despite this activity, an accepted
theory has not yet been proposed and development of a causal description is still a topical
problem. The current paper is another attempt in this field.

We use the unified approach suggested recently in [19] and successfully applied to the
description of the dissipative fluid flow. It is based on the obvious fact that an adequate
model may be constructed only using information about the phenomenon which reaches the
observer with some finite velocity (luminal, sound, etc). Introduction of finite information
(or signal) speed in a model of continuum prevents the occurrence of velocities which exceed
the signal velocity, otherwise they are either unobservable (the signal is unable to catch up
with the object), or (the object moves towards the signal) an apparent velocity smaller than
that of the signal is observed. Taking into account the observer and explicit consideration of
the finiteness of the signal velocity made it possible to derive a symmetric hyperbolic system
of hydrothermodynamic equations with a stable equilibrium state. This model of the fluid is
based on the general integral conservation laws and does not require any phenomenological
parameters in addition to the classical ones.

This paper is organized as follows. Section 2 briefly describes the causal fluid model
suggested in [19]. In the third section we discuss the averaging procedure which differs to
some extent from the one usually applied. The fourth section deals with the viscous transport
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of momentum and heat conduction. Both of these processes are closely connected and
essentially describe parametrically the whole spectrum of the small-scale movements which
we are unable to describe explicitly. Hyperbolic balance equations for kinetic and internal
energy, the momentum balance equation and the heat equation are derived here. Section 5
is devoted to the diffusion phenomenon. Contrary to viscosity and conductivity, diffusion is
regarded as a transport of mass and thus as a current. However, the diffusion of a component
of a mixture is a current inside the current of the mixture as a whole. As a result, any
deformation lacks its bijectivity and this gives rise to certain difficulties in the description.
The hyperbolic diffusion equation derived in this section allows one to use the hyperbolic fluid
dynamic equations of [19] in the case of mixtures as well. In the sixth section we discuss the
results obtained.

It is necessary to emphasize that all considerations are undertaken in the framework of
the continuum. The continuity hypothesis is assumed to hold, and the set of molecules is
substituted for the continuum of points which is described by the smooth functions.

2. Causal fluid model

Following [20] we shall think of a fluid body B as a set in a topological space. Each point
of the body is associated with its worldline in the space of events W or the four-dimensional
spacetime continuum. This space W may be thought of as a congruence of the worldlines.
The worldlines of the points of the body in total form the worldtube of the body B which is
considered as a four-dimensional manifold B4 in the space W .

2.1. Time and coordinate systems

Time is introduced via parametrization of the worldlines. Each worldline is equipped with
a real parameter t and all of these parameters are called time. Since the parametrization
is arbitrary additional requirements may be used to choose the most appropriate one. Our
requirement is connected with synchronization of times of different worldlines. We choose
one special worldline with arbitrary parametrization which will be called the worldline of the
observer. All other parameters will be synchronized with the observer’s time.

It is convenient to choose a synchronization procedure such that it may be interpreted in
terms of the velocity of a signal which is used for soundings of the medium and carrying the
information back to the observer (see, e.g., [21]). Let the information about the fluid motion
reach the observer with a finite signal velocity. We call the signal a monochrome radiation
which weakly interacts with the fluid in study. This means that the signal propagating in the
fluid does not change its physical properties. The phase speed of the signal will be denoted
as c.

As a result only one time is left, the time of the observer since all other times are
synchronized with it. Taking into account the existence of a preferential worldline of the
observer, the coordinate systems will be defined such that this worldline coincides with the axis
connected with time. The spacetime continuum is assumed to be homogeneous, thus the origin
of the coordinate system may be chosen at an arbitrary point of the observer’s worldline.

2.1.1. Euler coordinates. Consider a space of events W as a direct product of the observer’s
worldline and three-dimensional space of synchronous (with respect to the observer’s time)
events. We map the space of synchronous events onto R

3 and the observer’s worldline onto the
space of imaginary numbers which will be denoted as iR1. This trick allows unified treatment
of temporal and spatial variables. Now the new map φt :W → iR1 × R

3 which is called the
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observer’s frame of reference may be considered. This map equips each point P ∈ W with
four numbers xP = (x0, x1, x2, x3), the coordinates of the point. The worldline of the body
point is defined by four functions x0(t), x1(t), x2(t), x3(t) which give for each time value the
Euler coordinates of the point of the body. The observer’s worldline is the line (x0(t), 0, 0, 0)

by definition. It is assumed that dx0 = icdt , where i = √−1 and c is the phase velocity of
the signal which is used for observations and measurement of the fluid motion. The tangent
4-velocity vector �vP = dt xP is defined at each point of any of the worldlines. Thus, the vector
field V is defined on the manifold B4. We further define at each point of W the coordinate
basis of tangent vectors {�eα}3

α=0, �eα = ∂xα . Then, �v = vα �eα (hereafter the index summation
convention is used).

2.1.2. Lagrangian coordinates. Let the vector field V be smooth. At each point of B4 the
tangent vector �v �= 0 due to v0 = ic �= 0. Under these conditions the following theorem
holds (see, e.g., [22]): for small enough vicinity of the arbitrary non-singular point of B4

it is possible to choose a system of coordinates (X0, X1, X2, X3) such that the vector field
V on B4 is constant (∂X0 , 0, 0, 0). Classical fluid mechanics calls the numbers X1, X2, X3

the Lagrangian labels or coordinates. By analogy, the four numbers (X0, X1, X2, X3) where
dX0 = icdt will here be called the Lagrangian coordinates of the point of the body. Since
the spatial components of the Lagrangian coordinates do not depend on time, the worldline of
each point is a line parallel to the worldline of the observer (X0, 0, 0, 0), i.e. the X0 axis.

So, the point P of the body B located at time tP at the point P of the space of events W
is described both by its Lagrangian coordinates XP = (

X0
P ,X1

P ,X2
P ,X3

P

)
and by its Euler

coordinates xP = (x0(tP ), x1(tP ), x2(tP ), x3(tP )).

2.2. Measures and mass conservation law

Synchronous cut Bt of the worldtube will be called the configuration of the body at time t.
It is possible to introduce measures on Bt with the usual interpretation of mass, volume and
energy of the body. Let m(Bt ) and ω(Bt ) be such measures which we shall call the mass and
volume of Bt , respectively. Mass m is assumed to be absolutely continuous with respect to the
volume ω, i.e. ω(P) = 0 ⇔ m(P) = 0 for any configuration of the arbitrary body P . In this
case, the connection between both measures m and ω is established by the Radon–Nikodym
theorem [23], according to which there exists a unique function ρ defined on Bt such that

m(Bt ) =
∫

ω(Bt )

ρ dω. (1)

The function ρ is called the derivative of measure m with respect to measure ω or the mass
density, since m is the mass. The mass conservation law

dtm(Bt ) = 0 (2)

is postulated.
Apart from the mass m the volume ω(Bt ) may vary with time. Let � denote the volume

of worldtube cut at the reference time t0. Then, for arbitrarily located configuration Bt we
may write dω(Bt ) = Jd�. Function J describes a change of the volume dω(Bt ) with time
relative to the reference volume d�. The connection between the two measures m and � is
similar to relation (1)

m(Bt ) =
∫

�

ρJ d�. (3)
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Since � does not depend on time, equation (2) leads to the conservation law∫
�

dt (ρJ ) d� = 0.

On the assumption that the integrand is a continuous function and Bt is arbitrary we obtain

dt (ρJ ) = 0. (4)

When ρ is interpreted as a mass density, equation (4) is a four-dimensional continuity
equation. We shall consider non-singular motion, i.e. such that there exists a 1–1 coordinate
transformation XP �→ xP . From this coordinate point of view relations (1) and (3) may be
interpreted as the mass of the worldtube cut Bt expressed in terms of the Euler and Lagrangian
coordinates, respectively. The time-dependent function J in formula (3) is nothing but the
Jacobian of the coordinate transformation J = det(∂Xαxβ). Using the coordinate systems
introduced, equation (4) may be written as follows:

div (ρ �v) = 0. (5)

2.3. Metric tensor and kinetic energy conservation law

The interpretation given to equation (4) is not unique. Another possible interpretation requires
consideration of a tangent vector field V induced on the worldtube B4 by the parametrization
chosen. Consider the quantity k = 1

2ρ|�v|2 which will be called kinetic energy density. To
express this quantity in terms of the velocity components, we need the introduction of a metric
tensor, i.e. a real linear symmetric two-argument function g(�v, �w) defined on the vectors.
Using the standard notation, the absolute values of the velocity vector and kinetic energy
density are then written as follows:

|�v|2 = gαβvαvβ k = 1
2ρgαβvαvβ. (6)

Components of the metric tensor depend on the choice of the basis vectors and in the case of
orthogonal basis, tensor g is diagonal

|�v|2 =
3∑

α=0

gααvαvα.

It is convenient to define the metric tensor such that the length of the velocity vector �v
tangent to the worldline is constant, although arbitrary. For simplicity we choose |�v| = 1. If
we set gαα = g0 for all α, then

g0 = 1∑
α vαvα

(7)

and the metric tensor is proportional to the identity tensor I, i.e. g = g0I.
In this case the kinetic energy density is equal numerically to half the value of the mass

density and equation (4) may be treated as the kinetic energy conservation law

dt (kJ ) = 0. (8)

Thus the other meaning of the measure m(Bt ) is the kinetic energy of the worldtube cut

K(Bt ) =
∫

�

kJ dω =
∫

ω(Bt )

k dω.

By analogy we write (8) as

div (k�v) = 0. (9)
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3. Averaging and total energy conservation law

3.1. Averaging

Since fluid mechanics is based on the continuity hypothesis, it is a macroscopic theory which
describes the most probable behaviour of the system consisting of a large number of particles.
For that reason, the equations of fluid mechanics must describe averaged motion of the points
of the body along the smoothed worldlines.

Contrary to usual averaging procedures, according to which every dynamical variable is
independently considered as the sum of smooth and non-smooth components (see, e.g., [24]),
we regard all fluid mechanics fields as closely connected with each other. Hence, a random
disturbance in any of these fields gives rise to disturbances in others. Thus, it is required
to choose one of the hydromechanical fields which will be thought of as independent and
will be written as the sum of smooth and pulse components. The rest of the fields will then
be considered as smooth (i.e. non-random) if they are computed using the smooth field of
an independent variable. Evidently, the independent variable should be one of the primary
characteristics of the medium. The 4-velocity of the point of the body naturally can be taken
as such.

Indeed, the starting concepts in our fluid mechanics considerations are the body B, its
image B4 in space of events, and measures of both of these objects. They are mass of the body
µ(B), which induce mass m(Bt ) of the worldtube cut (see [19] for details) and its volume
ω(Bt ). Measure m is time-independent, whereas measure ω is in general a time-dependent
function. It can easily be shown that the velocity dtω is defined by the vector field �v tangent
to the worldlines, namely, if B0 = Bt when t = 0 is a reference configuration of the body and
� = ω(B0), then

ω(Bt ) =
∫

�

J dω.

The volume change velocity is then as follows,

dtω =
∫

�

dt J dω =
∫

ω

1

J
dt J dω =

∫
ω

div �v dω (10)

and this gives a differential relation which is valid at an arbitrary point of B4

1

J
dt J = div �v. (11)

Note that formulation of the motion scaling problem makes sense just at this very step of
development of the theory, although neither the mass density nor the pressure has yet been
introduced.

Thus, the only time-dependent measure which may be regarded as containing a stochastic
component is the volume of the configuration of the body. According to (10) evolution of this
measure is defined by the velocity vector field. The velocity �v and Jacobian J are those local
characteristics of the moving fluid which must be treated as primary in contrast to the mass
density, the pressure, and so forth. Since the theory of fluid motion is further developed in
terms of velocity, it is convenient to use the velocity as the quantity which undergoes averaging.

The averaging operator (denoted by the overbar) must be a continuous linear projector
mapping set of non-smoothed objects onto a set of averaged objects [24]. We represent the
initial non-averaged worldline λ(t) as the sum λ̄(t)+λ′(t) of a smoothed curve λ̄(t) and a pulse
curve λ′(t), then the velocity vector �v(t) will divide into two parts �v(t) + �v′(t). The first one
is tangent to a smoothed worldline and the second, to a pulse curve. Vector �v is understood as
the sum of two elements of tangent vector space.
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3.2. Metrics

Metrics in terms of velocity of mean motion are defined such that the length of the non-averaged
velocity vector is equal to unity

|�v|2 = gαβvαvβ = 1.

Applying the averaging procedure we get

|�v|2 = |�v + �v′|2 = gαβ(v̄αv̄β + v′αv′β).

The quantity

k̄ = 1
2ρ| �̄v|2 = 1

2ρgαβ v̄αv̄β (12)

is called the kinetic energy density of the mean motion, and the quantity

e = 1
2ρ|�v′|2 = 1

2ρgαβv′αv′β (13)

is called the internal energy density. Besides

2
k + e

ρ
= 1. (14)

In the case of orthogonal basis, g = g0I. Equation (14) using (12) and (13) is rewritten as

g0δαβ v̄αv̄β + 2ε = 1

where ε denotes specific internal energy density, ε = e
ρ

. Metric coefficient g0 is then defined
by

g0 = 1 − 2ε∑
α(v̄α)2

. (15)

3.3. Total energy conservation law

As has been mentioned in the subsection 2.3, the quantity 1
2m(Bt ) may be treated as the kinetic

energy of the worldtube cut. Introduction of the averaging procedure divides this quantity
into two parts, namely K(Bt ), kinetic energy of the mean motion (note that we use the same
symbol in a new meaning), and E(Bt ), internal energy of the worldtube cut

1
2m(Bt ) = K(Bt ) + E(Bt ) K,E > 0.

The left-hand side is then called total energy of the configuration Bt of the body B. Derivatives
of K and E with respect to measure ω are densities k and e introduced above. In the
thermodynamic case, equation (4) does not change and equation (8) turns into the total
energy k + e conservation law

dt ((k + e)J ) = 0 (16)

or

div (k + e)�v = ρdt

k + e

ρ
= 0. (17)

4. Viscosity and heat conduction

Heat conductivity and viscous momentum transfer by tradition are considered separately. In
both cases the notion of surface interaction is employed. This approach for causal description
of the viscous momentum transfer has been used in [19]. Another approach is developed here.
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4.1. Averaging the equations

One of the main ideas underlying fluid mechanics consists of scale separation of motion.
Large-scale motions are described explicitly, whereas small-scale motions are described
parametrically. The momentum and energy exchange between both groups of motions are
formulated in terms of viscosity and conductivity. The equations for large-scale evolution of
the fluid are derived by averaging the source differential conservation laws of mass and energy

div (ρ �v) = 0 (18)

div (k�v) = 0. (19)

Due to continuity and linearity of the averaging operator the first linear equation gives a
continuity equation of mean motion

div (ρ �v) = div ρ �v = div (ρ �̄v) = 0. (20)

Contrary to (18), equation (19) is nonlinear with respect to �v, which prevents derivation of a
relation as simple as (20). To derive an equation for the kinetic energy, we shall average the
kinetic energy flux density first, since div (k�v) = div k�v. So,

k�v = 1
2ρgαβvαvβ �v

= 1
2ρgαβ(v̄αv̄β �̄v + v′αv′β �̄v + v̄αv′β �v′ + v′α �v′v̄β + v′αv′β �v′)

= 1
2ρ(v̄αv̄α �̄v + v′

αv′α �̄v + 2v̄αv′
α �v′ + v′

αv′α �v′)

= (k̄ + e) �̄v + ρv̄αv′
α �v′ + ρε′ �v′.

Here ε′ denotes 1
2v′

αv′α (cf formula (13)). Calculating the divergence we find

div k�v = (kvγ );γ = ((k̄ + e)vγ );γ + (ρv̄αv′
αv′γ );γ + (ρε′v′γ );γ = 0 (21)

where (·);γ denotes the covariant derivative in the direction of the basis vector �eγ . Covariances
in (21) which describe the energy interchange of different types of motion are often expressed
via gradients of the corresponding quantities (see, e.g., [24]), namely

v′
αv′γ = gγβv′

αv′
β = χgγβ(v̄α;β + v̄β;α)

ε′v′γ = gγβε′v′
β = θgγβε,β .

Here (·),β stands for partial derivative with respect to xβ and χ and θ are coefficients of
proportionality. The expression for velocity covariance includes a symmetric part of the
velocity gradient only since the tensor v′

αv′
β is symmetric. With respect to the orthogonal basis

we obtain

ρv′
αv′γ = −µ(v̄α;β + v̄β;α)δγβ µ = −g−1

0 χρ (22)

ρε′v′γ = −κρε,βδγβ κ = −g−1
0 θ. (23)

Using these expressions equation (21) may now be written as follows (from now on we omit
the overbar notation regarding the corresponding quantities as averaged):

((k + e)vγ );γ + (2ρχvαgγβv(α;β));γ + (ρθgγβε,β);γ = 0. (24)

The indices in brackets stand for symmetrization, i.e. 2v(α;β) = vα;β + vβ;α . Due to (17) the
first term in (24) is equal to zero and hence

(2ρχvαgγβv(α;β));γ = −(ρθgγβε,β);γ . (25)

The left-hand side describes part of the energy of mean motion which transforms into internal
energy. The right-hand side is the source of internal energy connected with redistribution of
internal energy.
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4.2. Balance equations

4.2.1. Kinetic energy balance equation. Now, removing in (24) the first parenthesis,
calculating the derivative in the second parenthesis and grouping the equation terms we
find

ρ dt

k

ρ
+ vα(2ρχgγβv(α;β));γ︸ ︷︷ ︸

=dtπ

+ ρ dt ε + 2ρχvα
;γ gγβv(α;β) + (ρθgγβε,β);γ︸ ︷︷ ︸

=−dtπ

= 0. (26)

Denoting both groups by ±dtπ we obtain the balance equations for different kinds of energy.
Thus the first group gives the kinetic energy density balance equation

ρ dt

k

ρ
= dtπ − vα(2ρχgγβv(α;β));γ (27)

= dtπ + 2ρχvα
;γ gγβv(α;β) − (2ρχvαgγβv(α;β));γ (28)

= dtπ + 2ρχvα
;γ gγβv(α;β) −

(
ρχgγβ

(
k

ρ

)
,β

)
;γ

− (ρχ dt v
γ );γ . (29)

The terms on the right-hand side describe the sources and sinks of kinetic energy due
to: compression/expansion (dtπ), dissipation of kinetic energy 2ρχvα

;γ gγβv(α;β) and
homogenization of disturbances (2ρχvαgγβv(α;β));γ in the kinetic energy distribution.

4.2.2. Momentum balance equation. The momentum balance equation can be easily derived
using the kinetic energy balance equation, namely

0 = ρ dt

k

ρ
− dtπ + vα(2ρχgγβv(α;β));γ

= vα(ρvγ vα;γ − π,α + (2ρχgγβv(α;β));γ )

= vα

(
ρ dt v

α − gαβπ,β +
(
ρχ

(
gγβvα

;β + gαβv
γ

;β
))

;γ
)
.

To within the vector orthogonal to �v this gives

ρ dt v
α = gαβπ,β − (

ρχ
(
gγβvα

;β + gαβv
γ

;β
))

;γ . (30)

In the case of orthogonal basis when gαβ = g−1
0 δαβ we find

ρ dt v
α = −δαβp,β +

(
µ

(
δγβvα

;β + δαβv
γ

;β
))

;γ . (31)

Here p ≡ −πg−1
0 denotes the pressure and µ is known as the dynamic viscosity coefficient.

Equation (30) as well as equation (31) have been previously obtained in [19] (cf equation (13)
and the stress tensor definition (20) therein).

4.2.3. Internal energy balance equation. The second group of terms in (26) gives an internal
energy density balance equation

ρ dt ε = −dtπ − 2ρχvα
;γ gγβv(α;β) − (ρθgγβε,β);γ . (32)

The right-hand side also contains terms which describe the sources of internal energy. The
first two terms coincide with the corresponding terms in the kinetic energy balance equation,
but have opposite sign. The loss/growth of kinetic energy leads to an increase/decrease of
internal energy. The last term describes redistribution of internal energy due to lessening of
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the gradients. Using the metrics and definitions (22) and (23) this equation may be written in
a more familiar notation

ρ dt ε = dtp + 2µvα
;γ gγβv(α;β) + (ρκε,β);γ δγβ . (33)

Here ε stands for g−1
0 ε. If mean motion is absent, equation (32) reads

ρ∂tε = −∂tπ − (ρθgγβε,β);γ
and describes evolution of the internal energy field due to homogenization of disturbances. In
the case of orthogonal basis this equation simplifies to

ρ∂tε = −∂tπ + (ρκε,β);γ δγβ .

The quantity κ is called the coefficient of thermal diffusivity.

4.2.4. Heat equation. Now it is possible to derive an equation for temperature T which is
defined via the relation dε = cp dT . Here cp is the heat capacity of the medium at constant
pressure. Substituting this definition into equation (33) we obtain

ρcp dt T = dtp + 2µvα
;γ gγβv(α;β) + (ρκcpT,β);γ δγβ

or in the absence of mean motion

ρcp∂tT = ∂tp + (λT,β);γ δγβ . (34)

Equation (34) is called the heat conduction equation. The coefficient λ = κρcp is known as
the coefficient of thermal conductivity.

Equations (33) and (34) are of second order and are hyperbolic since they both contain
the second derivative with respect to time, which has the proper sign due to imaginarity of the
zeroth coordinate.

5. Diffusion

Contrary to viscosity and heat conduction, diffusion is the transport of mass and thus it is a
current. However, there are some specific features which prevent one from using the standard
means of description.

5.1. Peculiarities and problems

Peculiarities

1. The body B is regarded to be the union B = ⋃
E BE of E = 1, . . . , n components BE .

Configurations of these components will be denoted as BE
t ⊂ Bt . In place of the single

measure m(Bt ), mass of the body, new n measures mE = m
(
BE

t

)
are introduced, each

of which is interpreted as the mass of the corresponding component. Besides, due to
additivity of the measure

m(Bt ) =
∑
E

mE. (35)

2. When interaction between the components is purely mechanical, the motion of each
component may be considered separately as the motion of a conserved quantity [1]

dtmE = 0 ⇒ dtm = 0. (36)

3. In the general case, each measure is connected with its own transport, i.e. its own current.
This means that in place of a single velocity field, n vector fields are defined, one vector
field per component. Each vector field gives rise to congruence of the worldlines, the
union of which coincides with the worldtube of the body.



Causal description of heat and mass transfer 3063

Problems and approaches

1. Several congruences within a single worldtube manifest themselves in the fact that each
point of the body is connected with numerous worldlines. Thus, an important property
of deformation, bijectivity, is lost. Each point moves in different directions at the same
time. However, there is no contradiction here since we are speaking about the points of
the continuum, and various mappings W → R

4, not molecules or particles of the matter.
Nevertheless, the velocity becomes an inconvenient way for description of the motion.
We further use another method: convective transport is substituted for diffusive transport.

2. For a single fluid the metrics has been defined in terms of convective velocity, i.e. vector
tangent to the worldline of the point of the body. For the mixtures we must either define
different metrics for each component or prefer one vector field to all others and use it in
the definition of the metrics. We follow this way.

5.2. Mass density

We define mass density ρE of the Eth component of the mixture (the so-called partial density)
according to (1) as a derivative of the measure mE with respect to the volume of configuration
ωE = ω

(
BE

t

)
of component

mE =
∫

ωE

ρE dω. (37)

However, those parts of Bt which do not contain points of the component have zero partial
density of the corresponding component and, hence

mE =
∫

ω

ρE dω. (38)

Using (35) the mass of the body in terms of the volume of the current configuration is written
as

m =
∫

ω(Bt )

ρ dω =
∑
E

∫
ω(Bt )

ρE dω. (39)

Since the latter equality holds for an arbitrary mixture, one obtains

ρ =
∑
E

ρE (40)

i.e. mass density of the mixture is equal to the sum of partial densities.
Mass m in terms of volume � = ω(B0) of the reference configuration B0, reads

m =
∫

�

ρJ dω. (41)

Here J is the Jacobian of the Lagrangian to Euler coordinate transformation of points of the
mixture which rectifies the worldtube B4 of the body (the mixture as a whole). For mass mE

in its turn a similar reasoning is valid, i.e.

mE =
∫

�E

ρEJE dω =
∫

�

ρEJE dω (42)

where �E = ω
(
BE

0

)
, and JE is the Jacobian of the coordinate transformation of the points of

the Eth component which rectifies its worldtube (i.e. worldtube of BE). The latter equality in
(42) holds due to the above-stated reasons (see (37) and (38)).
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5.3. Congruence

Each body B corresponds to unique worldtube B4. However, each worldtube corresponds to
infinitely many congruences of worldlines. To make use of this non-uniqueness, we bind each
component of the mixture with a separate congruence. The vector field of the component
induces a congruence of the worldlines B̂4

E , which is a submanifold of worldtube B4. We may
supplement B̂4

E up to B4 using an arbitrary congruence of worldlines, and get the congruence
B4

E , i.e. the worldtube of the Eth component. Thus, worldtubes of each of these congruences,
which are in general different, coincide with the worldtube of the body B4.

5.3.1. Congruence of the mixture (single fluid congruence). Let us define the centre of the
mass x∗ of the configuration Bt as follows:

x∗(Bt ) =
∫
ω(Bt )

ρx dω∫
ω(Bt )

ρ dω
= 1

m(Bt )

∫
ω(Bt )

ρx dω = x∗(t,B).

Let infinite sequence B,P1,P2, . . . , which consists of parts of the body B ⊃ P1 ⊃ P2 ⊃ . . .

be such that intersection of all of its terms ∩kPk = P is equal to the point of the body P ∈ B,
i.e. there is only one point common to all of these parts. The worldline of this point is defined
as follows:

x(t,P) = lim
k→∞

1

m
(
Pk

t

) ∫
ω(Pk

t )

ρx dω. (43)

Here Pk
t ⊂ Bt is the image of Pk in the space of events at time t. Similarly we construct

worldlines for all other points of the body. These worldlines in total form the congruence of
the worldtube of the body which corresponds to the density field ρ.

5.3.2. Congruence of the component of the mixture. Let the body be a mixture of n
components each of which corresponds to partial mass density field ρE on the worldtube.
Every component corresponds to its own collection of the worldlines which are defined by a
relation similar to (43)

xE(t,P) = lim
k→∞

1

mE

(
Pk

t

) ∫
ωE(Pk

t )

ρEx dω = lim
k

1

mk
E

∫
ω(Pk

t )

ρEx dω. (44)

The latter equality holds since ρE = 0 outside ωE

(
Pk

t

)
. Distribution of partial density ρE

differs in general from ρ and congruences of the worldlines connected with relations (43)
and (44) do not coincide being in total one and the same worldtube B4 in both cases. When
ρE = 0, the congruence is arbitrary since the velocity vector field does not take part in the
transport of mass.

5.3.3. Connection between congruences of the mixture and its components. Connection of
the mass of the mixture and its density field with masses and densities of its components is
known (relations (35) and (40)). Now it is possible to find a connection between different
congruences of a given worldtube. Definition (43) gives

x(t,P) = lim
k

1

mk

∫
ωk

ρx dω = lim
k

1

mk

∫
ωk

(∑
E

ρE

)
x dω

=
∑
E

lim
k

1

mk

∫
ωk

ρEx dω =
∑
E

lim
k

mk
E

mk

1

mk
E

∫
ωk

ρEx dω

=
∑
E

CExE(t,P).
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Here mk = m
(
Pk

t

)
,mk

E = mE

(
Pk

t

)
, ωk = ω

(
Pk

t

)
, and CE = limk

mk
E

mk denotes a derivative of
the measure mE with respect to the measure m, which is called the concentration of the Eth
component of the mixture. Thus, congruence of the mixture is the weighted-mean congruence
of its components.

5.4. Vector fields on B4

5.4.1. Velocity vectors and the tangent vector spaces. Set T of the vectors tangent to the
worldtube at some point does not coincide with set V of the permissible velocity vectors at the
same point. Each velocity vector has a non-zero zeroth component v0 = ic �= 0 with respect
to an arbitrary basis. Due to this feature of the velocity vectors it is impossible to introduce
a structure of the vector space on the set V , because the zero vector is not an element of this
set. However, this set may be treated as an affine space, and each element �v ∈ V may be
considered as the sum �v = �τ + �u. Here �τ ∈ T is a fixed tangent vector and �u ∈ U , where U
is a subspace of T . It is convenient to choose �τ = (ic, 0, 0, 0). Then the set U will consist of
tangent vectors with zeroth component equal to 0, i.e. vectors tangent to the configuration of
the body.

Classical fluid mechanics defines the vector spaces using the component-wise addition
and multiplication by number. In the four-dimensional context operations are defined on the
elements of U , which becomes the vector space since the corresponding axioms are satisfied.

Note that the sum of two 4-velocity vectors considered as the elements of the affine space
V is not defined whereas the remainder of the same vectors regarded as elements of the tangent
vector space T is defined and belongs to U ⊂ T .

5.4.2. Non-uniqueness of vector field on B4. By virtue of conservation law (36) for the
mixture and its components, differentiating (41) and (42) with respect to t leads to the following
equalities which are valid along the corresponding worldlines

dt (ρJ ) = 0 dt (ρEJE) = 0 ∀E. (45)

Taking into account that dt J = div �v and dt JE = div �vE we obtain

div ρ �v = 0 div ρE �vE = 0. (46)

Here �v = �v(Pt ) and �vE = �vE(Pt ) are velocity vectors tangent to worldlines x(t,P) and
xE(t,P) which pass through the point Pt . The same is valid for any other point of the
configuration of the body. This means that a non-unique vector field is defined on a worldtube
and there exist different congruences which make one and the same worldtube B4. As has
been noted in subsection 5.4, vectors �v and �vE belong to the affine space of permissible
velocity vectors V , and thus are equal to �v = �τ + �w and �vE = �τ + �wE . In turn, the vectors
�w = (0, w1, w2, w3) and �wE = (

0, w1
E,w2

E,w3
E

)
are elements of the tangent vector space U .

Differentiating (43) and taking into account (45) one finds

�w(Pt ) = dt x(t,P) = lim
k

1

mk

∫
ωk

ρ �w dω = lim
k

1

mk

∫
ωk

(∑
E

ρE

)
�w dω

=
∑
E

lim
k

mk
E

mk

1

mk
E

∫
ωk

ρE �w dω =
∑
E

CE �wE(Pt )

where

�wE(Pt ) = lim
k

1

mk
E

∫
ωk

ρE �w dω.
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At points where the partial density is equal to zero the input of the velocity component is also
zero, due to CE = 0. Hence, the velocity field (as well as congruence) in these domains may
be arbitrary.

The following equalities give a connection between the mass density flux of the mixture
ρ �v and fluxes of mixture components ρE �vE

ρ �v = ρ(�τ + �w) = ρ

(
�τ +

∑
E

CE �wE

)
= ρ�τ +

∑
E

�wEρCE

= ρ�τ +
∑
E

�wE lim
k

mk

ωk

mk
E

mk
= ρ�τ +

∑
E

�wE lim
k

mk
E

ωk

= ρ�τ +
∑
E

�wEρE =
∑
E

ρE �τ +
∑
E

�wEρE

=
∑
E

ρE(�τ + �wE) =
∑
E

ρE �vE.

Here we make use of equalities (37) and (38). Besides, the following relations are valid

ρE = CEρ ⇒
∑
E

CE = 1.

Thus, we must either be able to distinguish between different vector fields or choose an
alternative way to describe the motion, a way which does not explicitly include the velocity
vector. We shall try to utilize this possibility. Using the continuity equation we exclude the
velocity where possible or construct the scalar div �v which defines the scalar field on B4 and
is frequently assumed to be constant.

5.5. Metrics

Considering the motion of components as independent requires either introduction of n
different metrics since the latter are defined through the velocity field or preferring one such
field to all others and definition of the metric tensor via this very field. It is quite natural to
choose the velocity field �v as such. Definition of metric tensor g is then based on the condition

|�v|2 = gαβvαvβ = 1 − 2ε

where ε is specific internal energy density. If the basis is orthogonal, then gαβ = g0δαβ and
metric coefficient g0 is defined by relation

g0 = 1 − 2ε∑
α vαvα

. (47)

Formally, this is just the relation (15). However, vector �v has another meaning which here is
velocity of the mixture as a whole.

5.6. Derivation of diffusion equation

The mass of diffusing substance (component of the mixture) conserves, and hence the
continuity equation for the Eth component is the starting point of our reasoning

div ρE �vE = 0. (48)

Let �uE ≡ �vE − �v be the velocity of the Eth component relative to motion of the mixture as a
whole. Equation (48) is then written as follows:

div ρE(�v + �uE) = (ρ �v,∇CE) + div ρE �uE = ρdtCE + div ρE �uE = 0. (49)



Causal description of heat and mass transfer 3067

The first term on the right-hand side describes transport of the component via the velocity
field of mean motion. Individual velocities are contained in the second term only. Let us try
to substitute them for gradients of the corresponding densities. For the rest mixture, or in a
co-moving system of coordinates, equation (49) reads

div ρE �uE = 0. (50)

Calculating the divergence in (50) one obtains

uα
E

1

ρE

∇αρE = −div �uE.

To within the term orthogonal to �uE , we assume

1

ρE

∇αρE = −div �uE

|�uE|2 uEα. (51)

Denoting ζE = |�uE |2
div �uE

one finds

ρE �uE = −ζEg−1∇ρE

and further

div ρE �uE = −div (ζEg−1∇ρE).

Thus, a change in the partial mass density, which is not connected with transport by mean
motion, we have written in terms of the gradient of the corresponding quantity. Equation (48)
now reads

div ρE �vE = ρ dtCE − div (ζEg−1∇ρE) = 0. (52)

We further change the second term such that the whole equation is written in terms of
concentration CE . Since

∇ρE = ∇(CEρ) = ρ∇CE + CE∇ρ

we get

div (ζEg−1∇ρE) = div (ζEg−1ρ∇CE) + div (ζEg−1CE∇ρ). (53)

The second term in (53) may be written as follows:

div

(
ζEg−1ρE

1

ρ
∇ρ

)
. (54)

We express the gradient of mean density similarly to (51). The continuity equation leads to
1
ρ

dt ρ = −div �v, and to within the term orthogonal to vector �v we obtain

1

ρ
∇αρ = −div �v

|�v|2 vα

or, denoting ζ = |�v|2
div �v

1

ρ
∇αρ = − 1

ζ
vα.

Substituting this expression into (54), we find

div

(
ζEg−1ρE

1

ρ
∇ρ

)
= −div (ρEζEζ−1 �v) = −div (CEζEζ−1ρ �v)

= −ρ dt (CEζEζ−1).
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Now equation (52) looks like

div ρE �vE = ρ dtCE + ρ dt (CEζEζ−1) − div (ζEg−1ρ∇CE) = 0

or

ρ dtCE(1 + ζEζ−1) = div (ζEg−1ρ∇CE). (55)

In addition to concentrations of the components this equation contains only one velocity
vector, the velocity of the mixture as a whole. Since the values of the ratio ζEζ−1 are usually
negligibly small, equation (55) may be written in a more familiar form

ρ dtCE = div (ξEρ∇CE). (56)

Besides, it is assumed here that g = g0I. Coefficient ξE denotes the ratio ξE = ζEg−1
0 , which

is called the coefficient of diffusion of the Eth component. Equation (56) in turn is called the
diffusion equation of the corresponding component in a moving continuum. This equation is
hyperbolic since the operator on the right-hand side contains a second-order derivative with
respect to time and thus retains the causal relationship of events.

6. Discussion

The approach suggested in [19] allows derivation of hyperbolic equations for heat and
momentum transfer. An analysis of the diffusion phenomenon shows that this approach is
applicable in this case also. The hyperbolic diffusion equation derived describes equalization
of disturbances in the n component mixture. Thus, all kinds of transport phenomena may be
described using equations which do not contradict the causality principle. In what follows we
make some concluding remarks.

1. Despite the formal similarity of the equations which describe both groups of phenomena
(viscosity–conductivity and diffusion) their nature in the framework of continuum
mechanics is fundamentally different. The first group describes the momentum/energy
transport due to high-frequency velocity fluctuations which we are unable to describe
explicitly and use a parametric description. The second group is connected with transport
of the matter and thus should be described explicitly. This transport does not connect with
the high-frequency fluctuations (since all of them are already included in internal energy)
and it should not be confused with other transport phenomena. The problem consists of
non-uniqueness of the vector field on manifold B4. The vector fields are generated by
different components of the mixture. However, all of these fields are usually close to
each other and the description method utilizes this feature. Since diffusion is a material
flow, in the case of a single fluid both variants of description are possible. Indeed, along
with an ordinary problem of description of the fluid flow, the self-diffusion phenomenon
is also considered.

2. The above-written considerations concerning the nature of transport phenomena do not
guarantee causal stipulation of the corresponding description. The signal velocity used
for observation of fluid motion may be regarded as such a guarantee. A similar fact is
well known in the numerical analysis. An explicit method applied to a parabolic equation
actually substitutes the latter for a hyperbolic one. This occurs due to the following
reason. Any explicit method allows computation of a solution on a current time level
using the known solution from the previous levels. In this case, the velocity specified by
the method appears in a numerical analogue of the problem (usually this is discretization
steps ratio) as the upper limit for velocities permitted by the algorithm. Note that this limit
is not absolute, i.e. higher velocities are not forbidden, simply they will be interpreted in
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the wrong way (see [19] for details). This feature of the explicit numerical procedures is
well known as conditional stability.

3. Unlike most of known methods of deriving hyperbolic equations for transport phenomena,
the current issue deals with the continuum only without resorting to molecules and/or
particles of the matter. We tried to show that classical non-causal description of the
phenomena is connected not with substitution of the set of molecules for the continuum
and refusal to describe the detailed interaction of the microscopic particles, but with
the assumption of infinite velocity of signal propagation. Rejection of this assumption
allowed derivation in all three cases of causal equations which model the corresponding
transport processes. This idea is verified by the study of the classical limit of the equations
obtained. Namely, at c → ∞ we get the usual equations of motion of viscous fluid, as
well as equations of heat and mass transfer.
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